
Effective Hamiltonians and the magnetic excitations of singlet ground-state systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 7623

(http://iopscience.iop.org/0953-8984/2/37/007)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 11/05/2010 at 06:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 7623-7633. Printed in the UK 
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Abstract. It is shown that at low temperatures the effective Hamiltonian, or spin-Hamil- 
tonian, methods of magnetic resonance can be extended to the many-body problem of the 
magnetic excitation spectrum of singlet ground-state systems. This method of description is 
applied to the excitations of Cs3Cr,Br9 and theoretical methods for calculating the effective- 
Hamiltonian parameters are discussed. It is shown that at low temperatures the magnetic 
interactions in perfectly crystalline singlet ground-state systems do not contribute to the 
excitation linewidths. 

1. Introduction 

The spin-wave-like excitation spectrum of magnetic systems with singlet ground states 
has been the object of study in many inelastic neutron scattering experiments. Rare- 
earth systems provide many examples, of which Pr is perhaps the most well documented 
(see the review by Stirling and McEwen (1987)) but examples can also be found in 
compounds of transition metals (see, e.g. , Leuenberger et a1 1984). The interpretation 
of the dispersion relationships of these materials is usually given by making random- 
phase approximations in the corresponding double-time-temperature Green functions. 
It is a striking fact that excellent fitting of the dispersion curves is obtained in this way. 
The excellence of this fitting cannot, however, be taken as indicative of the physical 
validity of the approximation employed. Leuenberger and Gudel (1985) for example 
illustrate a case where random-phase approximations in first or in second order can both 
give equally excellent fits to the low-temperature data, but with markedly different 
exchange and crystal-field parameters. 

This paper presents some quite general observations relevant to the question of the 
fitting and theoretical interpretation of these dispersion curves. It will be shown that, 
for these materials at low temperatures, it is possible to construct quite general effective 
Hamiltonians which can give a perfect fit to experimental data, quite independently 
of any specific dynamical approximation. These effective Hamiltonians are in fact a 
generalisation to the many-body problem of the effective Hamiltonians so well known 
in the magnetic resonance of single ions. These generalised effective Hamiltonians serve 
the same purpose as do the spin Hamiltonians in magnetic resonance. They provide a 
theoretically well founded way of fitting experimental results, in terms of a limited 
number of parameters, while leaving quite open the theoretical interpretation of these 
results. An effective Hamiltonian in this sense means that the basis states within which 
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the Hamiltonian is defined are small enough in number to allow the Hamiltonian matrix 
to be diagonalised without any approximation. This will not be the case for the full 
physical Hamiltonian even though this itself is likely to be effective in the somewhat 
different sense of being a phenomenological rather than an ab initio construction. A 
theoretical connection between these different levels of description is given and it will 
be seen to offer a way of interpreting the experimental results which is an alternative to 
the more usual Green function methods. One immediate benefit of this method is that 
it makes clear that the excitation linewidths must vanish at T = 0 in the case of an array 
of interacting magnetic centres having perfect translational symmetry. The prediction 
of non-zero residual linewidths by some Green function calculations is therefore a 
spurious result associated with the higher-order decoupling approximations involved in 
calculations of this kind. 

2. Magnetic excitations at T = 0 

The problem concerns the dynamical behaviour of a set of interacting magnetic centres 
arranged on a perfectly periodic lattice. Each such localised centre is characterised by a 
set of crystal-field states, la) (a = 0, 1, . . . , p )  where la = 0) is a singlet ground state. In 
the general case there may be several centres in each primitive unit cell and these may 
be of different types. A general Hamiltonian describing two-body interactions within 
such a set of interacting centres is of the form 

where n = 1, . . . , N labels the unit cell and i, j the particular centre in each cell. The 
operators in (2.1) are all written in the so-called ‘standard basis’ form so that 

On$(ni) = Inia)(ni81 

is an operator which acts only on the states of the ith centre in the nth cell (Haley and 
Erdos 1972). These standard basis states are eigenstates of the spin Hamiltonian for 
each isolated centre. The corresponding eigenvalues Aim incorporate all the crystal-field 
and Zeeman splittings of each centre. 

The states representing the whole assembly of N such centres are formed from the 
direct products of these standard basis states and will be distinguished from them by 
parentheses. Thus the non-interacting ground state will be 

Similarly, excited eigenstates of the non-interacting assembly can be generated by the 
action of the various single operators on this ground state. Of these excited states the 
simplest correspond to the creation of a single excitation, i.e. 

Inia) = On&i)~0) .  (2.3) 

For N unit cells each containing m centres with p + 1 states there will be a total of 
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Figure 1. The energies of the ground state and 
the excited states corresponding to one and two 
excitationsinasystemwhere thereisonemagnetic 
centre per unit cell each having only one excited 
state. The creation of single excitations cor- 
responds to sharp transitions because only one 
state in this group satisfies the selection rule Ak = 
-Q. There are many such states covering a wide 
energy range corresponding to the creation of two 
excitations. 

Nmp such single excitation states. Linear combinations of these states can be formed to 
give irreducible representations of the translational symmetry group of the crystal, i.e. 

These irreducible representations will all be one dimensional, each labelled by the N 
different values of the wavevector k in (2.4), and every representation occurs mp times. 

The symmetry character of each state will of course not be changed by the interactions 
between centres. Such interactions have the translational symmetry of the lattice and so 
can only bring about mixing between states which have the same k-value. Inelastic 
neutron scattering involves transitions corresponding to sharply defined changes of k 
and this selection rule is likewise unaffected by these interactions. At low temperatures 
these transitions predominantly correspond to the creation of elementary excitations 
within the interacting magnetic assembly rather than to their destruction. The limit 
T-, 0 can therefore be represented as transitions from the interacting ground state 
as shown in figure 1. Provided that the interactions preserve the continuity between 
unperturbed and perturbed states which is implicit in figure 1 then this interacting ground 
state may be very different from the non-interacting ground state but it still has the 
symmetry character corresponding to k = 0. Likewise the interacting or the perturbed 
single excitation states will be different from the unperturbed states (2.4) but they will 
still be characterised by N different values of k and each k-value will occur mp times. 
Thus it is clear that, for this group of states, inelastic neutron scattering, with a neutron 
wavevector change Q ,  will only occur at sharply defined energies corresponding to the 
eigenvalues of the single excitation states with k = -Q.  The number of such excitations 
equals the number of such states, namely mp, the product of the number of centres per 
unit cell and the numberofexcitedstates percentre. Thesituationis farmorecomplicated 
in groups of states corresponding to multiple excitations. For example, in the group 
with two excitations there will be N ( N  - 1) ( m ~ ) ~  states; so each irreducible symmetry 
representation koccurs ( N  - 1) ( w ~ p ) ~  times. Under favourable conditions this multitude 
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of transitions may be grouped into narrow energy ranges, giving rise to scattering 
resonances which are still recognisable as such, although broadened somewhat in energy. 

The simplicity of the group of single excitation states also shows that the energy of 
these states and hence the dispersion relationships can be described in a simple general 
way. It is always possible to fit the energies of a set of states to the eigenvalues of a 
Hermitian operator acting within these states. This effective Hamiltonian becomes a 
particularly useful construct when it acts only within a subspace of states of limited 
dimension, so that the Hamiltonian matrix can be diagonalised, at least numerically, 
without approximation. This method is in use throughout magnetism but most notably 
in the spin Hamiltonians of magnetic resonance theory. An extension of the spin- 
Hamiltonian concept to the present case is possible because the group of single excitation 
states, although of large dimension (Nmp) ,  factorises into N subspaces each charac- 
terised by the N different values of k lying in the first Brillouin zone. Thus an effective 
Hamiltonian k can easily be constructed which acts within the space of the single 
excitation states defined by (2.3) and (2.4) to give as its eigenvalues the experimentally 
observed excitation energies 

It can easily be verified that the effective Hamiltonian &, unlike the original Ham- 
iltonian in (2.1), has no matrix elements connecting the single excitation states of (2.4) 
with any states outside this group. Furthermore the matrix representation of & within 
the states defined by (2.4) factorises into block diagonal form, where each block is at most 
of dimension mp X mp. Thus the diagonalisation of & reduces to the diagonalisation of 
a matrix of small dimension, or equivalently to solving an (mp)th-order polynomial. 
When the parameters Ae and J e  are properly adjusted, the roots of this (mp)th-order 
polynomial should fit the energy dispersion spectrum perfectly at T = 0 provided that 
(2.1) is itself an adequate representation of the situation. 

3. Application to Cs3Cr2Br9 

This material is one member of a large class containing relatively isolated pairs of Cr3+ 
ions. The antiferromagnetic coupling between members of an ion pair produces a singlet 
ground state together with an excited triplet and higher states. Within each unit cell of 
the hexagonal lattice there are two equivalent pairs forming two sublattices. Weaker 
exchange interactions exist between pairs, both within and between the sublattices, as 
shown schematically in figure 2. 

Following the procedure of Leuenberger et a1 (1984), only the ground and triplet 
states of the pairs will be considered. This then corresponds to a case where m = 2, 
p = 3. In fact for isotropic exchange interactions the degeneracy of the triplet states is 
preserved and the problem reduces to one corresponding to m = 2, p = 1. Using a 
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Figure 2. Schematic structure of Cs3Cr,Br9 show- 
ing the exchange interaction paths to first- and 
second-nearest-neighbour pairs. The Cr,CI, pairs 
are shown only as open circles except in a few sites 
where they are shown as two open circles joined 
with a line in order to indicate the interactions 
between the individual Cr3+ ions assumed in sec- 
tion 4.2. 

nm 

(3.1) 
where n ,  m label lattice cells and i = 1, 2 distinguishes between the two sublattices. 
1; andJE are effective exchange parameters within the same sublattice and between 
different sublattices, respectively. The operators Po and PI are projection operators 
acting on the ground and triplet states of each pair respectively, i.e. 

Po (n ,  i )  = I niO) (niO I Pl(n ,  i) = 2 Inia)(nial. 
a=1.2.3 

The operator L = SI - S 2 ,  where SI  and 9, are the spin operators of the individual Cr3+ 
ions within each pair. 

The triply degenerate single excitation states are constructed like (2.4) as 

where i = 1 , 2  as before and U = x ,  y ,  z and c = (OlL2,lO) = 5. 

enstates of Ae with energies E(k)  given by 
It can readily be verified that linear combinations of Ik, 1, U) and Ik, 2, U )  are eig- 

E(k)  = - J e  - f J ; ( k )  * tlJ,"(k)l (3.3) 
where 

~ ; ( k )  = 2 J ; ~ ,  eW(rn-rm) 
n 

and 

JE(k) = JEnmeik'(rn-rm), 
n 
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Figure 3. The dispersion curves obtained by using 
an effective Hamiltonian with the interactions to 
second-nearest neighbours given in (3.4) (full 
curves). The broken curves are the experimental 
results of Leuenberger er a1 (1984). 

r M K  r A 

The experimental dispersion curves along various directions are given by Leuen- 
berger er a1 (1984) who also give an equation, derived from a theory based on a random- 
phase approximation, which fits these curves to within their experimental accuracy. 
A least-squares fitting procedure was used to determine the effective-Hamiltonian 
parameters which allows (3.3) to fit these experimental data. Using interactions in (3.1) 
only to second nearest neighbours gives quite a good fit. This is illustrated in figure 3 
where it is compared with the experimental fitting of Leuenberger er al. It corresponds 
to non-zero values for the following parameters defined in figure 2: 

J ,  = -950 peV J;o = -52peV J; l  = +6peV 

J;2  = +2peV JF3 = +6peV J;4  = +0.4peV (3 14) 
J &  = -72yeV JEl = +2peV J &  = +23 yeV. 

Extending this fitting procedure out to third-nearest neighbours introduces only very 
small third-neighbour coupling parameters (less than 1 peV) while leaving the second- 
neighbour parameters given above essentially unchanged. Using interactions out to 
third neighbours gives a fitting which cannot be distinguished in figure 3 from that of 
Leuenberger er al. 

In Cs3CrZBr3 the strength of the interactions between pairs is close to the critical 
value at which a transition to long-range spin ordering occurs. In view of this it seems 
perhaps surprising that such good empirical fitting of the experimental data is achieved 
by using only short range interactions. It can, however, be seen that this fitting procedure, 
represented by (3.3), is very similar to a Fourier analysis of the dispersion curves, with 
the effective exchange parameters playing the role of Fourier coefficients. For this 
reason it is to be expected that a fitting by short-range interactions, involving the 
specification of only a few parameters, will be equally successful in other cases. Only 
where the disperson curves have sharp features should it be necessary to include longer- 
range interactions in (3.1). 

4. The relationship between H and & 

As the previous results illustrate, the effective Hamiltonian Ae can be a useful way of 
separating the problem of the summarising of experimental results from the more 
difficult task of their theoretical interpretation. Experimental measurements only 
directly determine the parameters of the effective Hamiltonian. Some theoretical inter- 
pretation is required to relate these effective parameters to the parameters of the ‘real’ 
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Hamiltonian H in (1.1). It is a feature of the effective-Hamiltonian method that there is 
in principle a very clear and direct relationship between H and I??. 

For the Hamiltonian 8 of (1.1) the unperturbed states of the isolated magnetic 
centres form a complete set. A unitary transformation operator will always exist which 
reduces to a fully diagonal form with respect to these states. There must therefore be 
a unitary operator which does less than this and reduces H to a block diagonal form, 
such that the transformed Hamiltonian has no matrix elements between groups of states 
having different numbers of magnetic excitations. This transformed Hamiltonian acting 
within the group of single excitation states is then the effective Hamiltonian &. 

In most many-body problems, including that considered here, f? can be written as 

H=A,+H, (4.1) 

where A, defines some non-interacting assembly of microscopic systems and H ,  rep- 
resents interactions between these systems. In the present case, H ,  is to be identified 
with the crystal-field energies of the isolated magnetic centres. In formal terms the 
effective Hamiltonian H e  can be defined by introducing the operator f i T  such that 

(4.2) H T  = u-lHU 

and the unitary transformation operator U is to be chosen so that 

[AT, A,] = 0. (4.3) 

Then the effective Hamiltonian is given by 

H e  = [ H T  - ( 0 ~ H ~ ~ O ) ] Q l  (4.4) 

where Q1 is the projection operator for the group of states containing a single excitation, 
i.e. 

Q1 = C. Inia)(nial 
nilv 

where Inicu) is defined by (2.3). The presence of the projection operator Q1 in (4.4) 
explicitly demonstrates that Ae has a defined operation only within the subspace of states 
defined by Q1. The ground-state expectation value of H T  is included in (4.4) so that the 
eigenvalues of H e  are the excitation energies relative to the perturbed ground state. 

4.1. Perturbation approximation of U 

Whenever the matrix elements of H between different groups of states are small com- 
pared with the energy differences between groups, then U may be approximated by a 
perturbation method. In doing this it is convenient to resolve the perturbation A,  into 
different components depending on their commutation properties with A,. Thus 

where 

and 

H=A,+H, + H l , + ~ H l , , m  
ELY 

(4.5) 
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[Al,, A01 = 0 = -EaA1.E,* (4 6) 

U =  expA (4.7) 

All unitary operators can be written in the exponential form 

where A is some anti-Hermitian operator (A' = -A) (see, e.g., Roman (1975) for 
mathematical details). It is very convenient therefore to develop a perturbation approxi- 
mation of AT by expressing the exponent of (4.7) as a power series in some multiplicative 
parameter of the perturbation A,:  

A = A , + A , + A 3 +  . . . .  

A T =  U-lAU= A +  @,A] + B[[A,A],A] + * * * .  
With this form for U, equation (4.2) becomes 

(4.8) 
Choosing A to ensure that (4.3) is satisfied to first order gives 

A, = -z----. H L E ,  

E, ELY 

The higher-order terms A2,  A3,  etc, can be determined in a similar manner. Carrying 
this procedure out to second order in A gives AT to third order as 

[[Ai.o, ALE,], f i 1 . - ~ , 1  
A T =  A, + A,, - ;z -BE 

E, ELY E, E: 

4.2. Non-perturbational approximation 

For many applications the perturbation series (4.9) will converge quickly enough to give 
an adequate account of the relationship between fi and in just the first few terms. 
This is unlikely to be the case, however, for materials such as Cs3Cr2Br9 which are close 
to the condition of critical coupling. Here a non-perturbational approximation to U in 
(4.7) may be required or at least a sum of avery large number of terms in (4.8) and (4.9). 
One well known method of doing this makes use of the fact that the number z of 
neighbours interacting with any given centre is usually large enough to allow neglect of 
terms in (4.8) and (4.9) which are of order 1/z. This is equivalent to the neglect of 
multiple interactions involving the same site, since a repeated site interaction eliminates 
one free summation over site indices in (4.8) and (4.9). In formal terms this amounts to 
approximating the commutators in (4.8) and (4.9) by 

C [ A n ,  B / c m I  = < o I [ A n ,  B n I I 0 ) e m  + ( O l [ A n ,  C n ] l O ) B /  (4.10) 
nlm nm nl 

where A,, B,, Cm are operators acting on the states of sites, n ,  I ,  m. This random-phase 
type of approximation could be used to perform infinite sums of the leading terms of 
(4.8) and (4.9). Such a non-perturbational treatment would, however, be unable to 
provide any reliable estimation of the difference between real and effective crystal-field 
parameters. It would not be able to distinguish between A of (2.1) and Ae of (2.5) 



& and magnetic excitations of singlet ground states 763 1 

because the random-phase approximation disregards the correlations between single- 
site operators on which this distinction depends. 

A less severe approximation, which avoids some of this difficulty, would be to use 
the random-phase approximation only to incorporate the secular part of the pertur- 
bation, i.e. Al0 in (4.5), into the unperturbed Hamiltonian A,. This would lead to a 
modified perturbation expansion in terms only of the non-secular part of the pertur- 
bation, i.e. CnAIE, of (4.5). Such a modified perturbation expansion might be expected 
to have improved convergence properties. 

This does appear to be the case for Cs3Cr2Br9. For this material the model Ham- 
iltonian used by Leuenberger et a1 (1984) can be written as 

A = A, + A,, + A; 
where 

A, = -V%J (PI,) (0) 
a 

A,, = - 2 J $ [ ( P , L a P , ) ( - k )  J ( k  * (PlLUPO)(k) + ( P , L , P , ) ( - k )  - (P,L,P,)(k)] 
k.a 

+ C+[(PoL1P1)(-k) J (4 - (P,L,P,)(k) 
k 

+ (PILIP,) ( - k )  * (POL& ( k ) ]  

J ( k )  A;  = A,  - A,, = - I: - [ ( P , L , P , ) ( - k )  * (P,L,P,)(k) 
k.a 4 

(4.11) 

+ ( P J a P o ) ( - k )  * ( P I L u P O ) ( k ) ]  
J ( k )  + I: c [ ( P , L , P , )  ( - k )  - (POL$,) (k)  

k 4  

+ ( P , L , B , ) ( - k )  ' (P,L*Po)(k)] 
where a = 1,2 and Jp and J ,  are the exchange constants for interactions between nearest- 
neighbour spins in the same sublattice and in different sublattices, respectively, as shown 
in figure 2. The Fourier-transformed operators in (4.11) are defined by 

(PoLaP1) ( k )  = 7 2 (PoLPl) (na)e-ik'rna. 
1 

N I l  

If a perturbation expansion such as (4.7) and (4.8) is formed in terms only of powers 
of the non-secular perturbation A ; ,  then, to first order in such an expansion of A ,  one 
obtains 

A ,  = C A , € ,  = - E Kp(k) r (P l~20>( -k>  - (Pl~aPO)(k) 
E ,  k. a 

(4.12) 
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K,(k) = {Jp(k)@J i- 20Jp(k)l - 5 I J C ( k ) l 2 H ~ / W ) l  

KCW = W J C W l  P/D(k)l 

D ( k )  = [8J + 20J,(k)I2 - 100/J,(k)/2. 

It can be verified that to the accuracy of the approximation (4.10) 

[(A() + & l o ) ,  A,] = -fi; = - f i I , E e  
E ,  

and so to second order in HT 

(4.13) 

(4.14) 

The projection of (4.14) onto the single excitation states and the subtraction of constant 
terms corresponding to ground-state energy shifts gives the effective Hamiltonian in the 
form shown in (3.1) and hence the excitation energy dispersion relationship (3.3). 

The effective Hamiltonian derived from (4.14) in this way was used to fit the exper- 
imental results of Leuenberger et al. A least-squares fitting procedure was used to select 
the values of J ,  J p  and J ,  in (4.11) which best fit the experimental dispersion curves. The 
fitting was done in two slightly different ways. The experimental data are fitted equally 
well either way but with slightly different parameters. Firstly the commutator in (4.14) 
can be evaluated approximately using the same approximation (4.10) as is used in (4.13). 
The fitting achieved in this way corresponds to the parameters 

J = -1.01 meV J ,  = -54 peV J ,  = -65 peV. (4.15) 

In comparing the results (4.15) with those of Leuenberger et a1 it is necessary to take 
into account an error in the equation used by Leuenberger et a1 for the dispersion 
ielationship. As a result of an algebraic error from their equation ( 2 )  to equation (4) the 
J,-value that they used should be twice the value quoted. When this error is corrected, the 
results (4.15) agree very well with the corresponding parameters given by Leuenberger et 
a1 (1984). 

A more accurate evaluation of the commutator in (4.14) would go beyond the 
random-phase approximation (4.13) and take proper account of the correlations 
involved in multiple-spin interactions on the same lattice site. Only by including these 
correlations can an account be given of the renormalisation of the single-site crystal- 
field parameters. When these correlations are taken into account, the least-squares 
fitting of the experimental data is as shown in figure 4. It corresponds to the parameters 

J = -0.757 meV J ,  = -56 peV J ,  = -66peV. (4.16) 

The parameters in (4.16) could be compared with the results of the higher-order 
random-phase calculations of Leuenberger and Gudel(l985). In both cases the renor- 
malised crystal-field splitting parameter J is reduced in magnitude compared with the 
random phase approximation value. Here, however, no correspondingly large increase 
in the inter-pair-exchange parameters are found, contrary to the results reported by 
Leuenberger and Gudel. 
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Figure 4. The dispersion curves obtained from the 
perturbational calculations in section 4.2 using 
the parameters given in (4.16) (full curves). The 
broken curves are the experimental results of 
Leuenberger eta/  (1984). 

5. Conclusion 

It has been shown that the concept of a spin Hamiltonian originally developed for the 
description of isolated magnetic centres can be extended to the case of interacting 
centres. This offers a new method both for the empirical description of such interacting 
systems and for their theoretical interpretation. One prediction of this new method is 
that, for a periodic array having a singlet ground state, the linewidth due to magnetic 
interactions should vanish at T = 0. 

This raises the question of the origin of the residual linewidths that are observed in 
these materials at T = 0. There are several possibilities. Crystal defects or chemical 
impurities will have the effect of destroying, to some extent, the perfect translational 
symmetry of the lattice. Such defects will therefore relax the selection rule of wavevector 
conservation which is the cause of the sharpness of these transitions. Another possibility 
is the coupling between the magnetic centres and other low-energy excitations, such as 
lattice vibrations or free electrons. 
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